Welcome to the latest edition of the LPFG Newsletter. This issue includes summaries of the fascinating research being carried out by some of our members. Jennifer Beamer writes about her work on Iron Age loomweights; Matthew Hitchcock considers the reframing of Iron Age shields; Mark Griffiths provides details of his work for the Pallasboy Project; and Meredith Laing introduces her work on later prehistoric fingerprints.

You can also find a review of the 2018 LPFG Conference, *The Matter in Hand*, by Allison Casaly, as well as information on the exciting *Setting Artefacts Free* project and some important announcements about upcoming LPFG events.

Figure 1: Chalk loomweight from Danebury illustrating double wear grooves above the perforation. Photo by Jennifer Beamer. Read more on page 11.
Welcome

The Later Prehistoric Finds Group was established in 2013, and welcomes anyone with an interest in prehistoric artefacts, especially small finds from the Bronze and Iron Ages. We hold an annual conference and produce two newsletters a year. Membership is currently free; if you would like to join the group, please e-mail LaterPrehistoricFindsGroup@gmail.com.

We are a new group, and we are hoping that more researchers interested in prehistoric artefacts will want to join us. The group has opted for a loose committee structure that is not binding, and a list of those on the steering committee, along with contact details, can be found on our website: https://laterprehistoricfinds.com/. Matt Knight is the current Chair and Helen Chittock is Deputy.

If you would be interested in helping to run the group, we would love to have you on the steering committee. It is open to anyone who would like to be involved. If you are interested, please e-mail us at the address given above.

*

The LPFG newsletter is published twice a year. To submit articles, notes or announcements for inclusion, please e-mail Andy Lamb and Helen Chittock at lpfgnews@outlook.com. Guidelines are available on the website, but please feel free to e-mail with any questions.
The Pallasboy Project: Re-crafting the past
Mark Griffiths

For the past four years, the Pallasboy Project has been generously supported by the Wood Culture Society, an organisation committed to understanding our global relationship with timber. Indeed, it is the Foundation’s interest in the impact this material has made on cultural development that has, in some way, set the direction of our own research. From its conception, our research group’s interest has focused on the culture and artistic intent of the makers of wooden artefacts discovered in the wetland landscapes of both Ireland and Scotland. Our method, along with the re-creating of specific Bronze and Iron age wooden objects, is to encourage new, diverse dialogues by staging multi-disciplinary events. Poets, musicians, scholars and artists, along with members, of the public are invited to engage with our re-made objects and then share, in any way they wish, their experiences.

For the practical process of crafting we have had authentic tools made using the cut marks found on the original as templates. Contemporary adzes and axes are used alongside these prehistoric copies for comparison, and for the practical need to keep our project to budget and within a realistic working timeframe. Initially, the use of modern tools felt like cheating. However, it has proved to be an incredibly informative approach to the work, highlighting as it does, the physical contrasts of crafting with basic forged iron and bronze over the sophistication of a contemporary tool. The precious time this saves also allows us to broaden the range of our other collaborative events.

The project takes its name from our first re-made artefact, the Pallasboy vessel; an Iron Age object discovered in the Toar bog of County Westmeath in 2000. Hewn from a single Alder tree, the exact purpose of this beautifully crafted artefact remains a mystery. Some have suggested it may be a cooking vessel, a small boat for navigating rivers, or even a baby’s crib. We have enjoyed testing all of these theories, along with some ideas of our own such as inviting experimental musicians, including Solamh Kelly, the respected Cork-based percussionist and composer, to further explore the deep percussive sounds we discovered as our axes shaped its soft curved form (Figure 1).

Figure 1: Re-creating the Pallasboy vessel.
Our second year’s funding gave us the opportunity to focus on the strange early wooden anthropomorphic figures unearthed in various wetland sites across Europe. Using bronze tools, we made a copy of the Red Man of Kilbeg, a figure carved from a sweeping curved length of alder wood which was discovered in 2003, preserved in the peat of the Ballykean bog of County Offaly, Ireland. One constant in all of our projects has been the difficulty sourcing appropriate timber. The pieces we make are carved from freshly felled green wood. Today, trees are cultivated in managed woodlands until harvested and kiln dried. It has proved incredibly challenging to find trees of the species, dimension and shape needed, with a land owner willing to let us cut them down. So it was with our Red Man. The serpentine-shaped original had been taken from a woodland far different from the ones we walk through today.

In a prehistoric woodland, trees would emerge from a forest floor strewn with the fallen limbs and trunks of those that had come before. In the case of the Red Man we were left to try and carve character into what was a very straight, very uninspiring piece of timber.

Wishing to gain different perspectives on the significance of the original figures, our group held workshops in the Methel Mara historic boat yard in Cork, and at University College Dublin’s Centre for Experimental Archaeology and Material Culture. A mix of academics and artists were invited to select a small alder log and carve their own representation of these sentinels from our past. All of the participants found the primal act of shaping a rudimentary form with simple tools both meditative and conducive to deep reflective thoughts. Each spoke of a ‘bond’ formed between themselves and their creation. These experiences, which are shared on our blog site, demonstrated the ritual importance of the act of making to the maker, and how these naive inanimate objects can be imbued with strong emotions and memory.

Figure 2: The re-crafted Ballachulish figure in its native landscape.
The team were invited to travel to the small Highland village of Ballachulish, located in the west of Scotland, to re-create an Alder wood figurine discovered there 136 years ago. Known as the Ballachulish Goddess or Goddess of the Straits, this near life-sized carving is thought to be a representation of a deity connected to the three magnificent snow-tipped mountains, which dominate the sky over the village. Working closely with the community, and with only a single blurred photographic image taken soon after her discovery, we carved a new Goddess. From the few days spent working with the local people we became aware of a feeling of loss in community (Figure 2). The artefact, so connected to the people, place and its past had been taken from the village of Ballachulish to be sealed behind glass in the National Museum of Scotland. Our Goddess was left to the community where, after being taken to visit local schools, she was interred back into the Highland earth. Over this last year the Pallasboy team have undertaken our most ambitious project so far. We have built a replica dug out boat from the Iron Age, based on a craft discovered preserved in silt on the bed of Lough Corrib, Co Galway by Ireland’s Underwater Archaeology Unit, led by Karl Brady. Working with a 17-meter Irish Oak the task so far has been both back breaking and fascinating. We hope to share the story of carving and launching our boat this year.

For more information please visit: https://thepallasboyvessel.wordpress.com

All images copyright of Brian Mac Domhnaill BA MSc MA

Mark has been creating, and restoring wooden artefacts for over thirty years, has run his own studios for the past twenty and also lectures at the University of Brighton in both the Craft and Design and Fashion and Textiles Departments. He has worked alongside historical societies on research into aspects of medieval woodworking, most recently in the construction and production of longbows. His own work has been shown at several exhibitions, including, on consecutive years, the prestigious ‘Celebration of Craftsmanship exhibition’ held annually in Cheltenham. Over the years he has written numerous articles for various craft publications, and has acted as technical adviser for two television production companies.

Reframing the Iron Age shield

Matthew Hitchcock

Shields have been one of the more difficult objects from Iron Age Britain to categorise – are they weapons or armour? Were they really used in battle, or were they produced primarily as a symbol of rank or status? This is an overview of some of the key research questions from my PhD thesis, currently underway at the University of Manchester, which aims to reframe how we look at later prehistoric shields. The catalogue underpinning the thesis comprises a synthesis of shields, shield fittings and miniature shields from England and Wales, and considers them in broader European context. The topic was selected, among other reasons, because a dedicated publication of British shields has yet to be produced. This, in part, is due to them being difficult to characterise as a coherent body of material culture. One of the
first issues necessary to tackle, and one that is synonymous with this kind of study, is typology – and this is one that has been far from simple.

Placing shields, especially those that are incomplete, into any kind of rigid typological criteria is potentially problematic for two reasons. Firstly, it crystallises the object, and denies the possibility that it may have once been assembled differently. As Helen Chittock (2017) has demonstrated with the Grimthorpe example, shields are composite objects that could be assembled from a combination of old and new components that may have each had their own significance or meaning. Rather, the shield should be conceptualised as an assemblage, probably produced by multiple skilled individuals, and as something that was continuously reproduced over time. It is also for this reason that the concept of ‘biography’ will be avoided. It has been previously employed with certain types of Iron Age object with some success (e.g. Joy 2009), but the multiple and potentially interchangeable nature of the shield makes the analogy with a human social life particularly unsuitable.

Instead, the term ‘object history’ will be used – a concept which still considers the material, the social, and the relational, but one which copes much better with an assemblage and its multiplicity (see also Jones et al. 2016). It is also useful in reminding us that certain shields, even in the Iron Age, were historic objects. Secondly, differential preservation poses further complications.

Although most Iron Age shields would probably have been made entirely of organic materials like wood, leather and rawhide (and thus have not survived), extant British examples are mostly made from a combination of metal (usually a copper alloy) and wooden parts. The fact that we only have a handful of complete or near-complete shields, where the metallic elements have been preserved, means that creating a catch-all typology based on the form of the complete shield is unhelpful. A solution to this is a simple, standardised, keyword-based typological system which will help make sense of, and draw out connections within the catalogue, whilst reflecting the composite nature of the shield.

The shield also represents a unique opportunity to explore the relationship between art and violence in the Iron Age, and this will be another key theme. The shield has become somewhat divorced from narratives of violence, partly due to its ambiguity, and due to the fact that ‘lone’ shield burials have been excluded from national surveys of warrior burials (e.g. Hunter 2005). My thesis will reposition the shield as a richly symbolic, yet dangerous object

Figure 1: Illustration of the Battersea Shield. Sheet bronze with repousse design and red glass inlays, c.350–50 BC. Drawn by the author.
which could be used with defensive and offensive intent. Gell’s (1998) agency-centred concept of ‘art as technology’ has been successfully applied to the study of Celtic weaponry (e.g. Giles 2008; Gosden & Garrow 2012), but we must also consider the fluidity of that agency between the human and non-human agent.

I argue that, in order to produce a more complete picture of the different ways that shields and other metallic weapons mediated violence, we must consider Iron Age martial art in both the material and the performance sense. Training to become proficient in the use of a shield could have required an amount of time, skill and bodily conditioning comparable to that required to produce it from raw materials. As Fraser Hunter (2005: 44) has pointed out, Iron Age violence was not homogeneous, and we must consider symbolic and threatened violence, as well as actual bodily trauma. In some situations, then, an intricately-decorated, enchanting shield may have had the desired effect without ever being physically used. In others, when all the threats and posturing was over, it was the level of skill with the shield and the performative conditioning of the body which made the difference between life and death.

With the goal of gaining some insight into how shields of different sizes and shapes require the body to interact with them in different ways, I recently undertook some experimental work with the kind help of staff at Cheshire Police Constabulary’s tactical training centre. Larger and taller shields are preferred to defend against projectiles but are more cumbersome and poorer at defending against bladed weapons. They could, however, also be used to safely pin down and incapacitate an enemy. Smaller, rounder shields allow for a more dynamic set of movements, and conical or dome-shaped bosses better deflect blades.

Figure 2: (left) A smaller, more dynamic round shield that can be used to parry, shunt and strike; (right) Police officers performing a shield training exercise. Images: Author’s own.
This kind of shield could also be more easily adapted for use as an offensive weapon. Interestingly, the police sergeant in charge of organising the training saw the shields that they use very much as ancient technology. Many objects from the Iron Age seem archaic or even bizarre to us now, while others feel more familiar. These modern police shields are, of course, made with modern materials, but are not that dissimilar in design to those in use in Britain over two thousand years ago. This small piece of modern ethnography helped put into perspective that, even in our 21st century society, shields are still considered a necessity in times of serious conflict, and this is just one of the reasons why studying their Iron Age counterparts is still so important.

Matthew Hitchcock is an archaeologist working part-time for ArchHeritage and a PhD student at the University of Manchester, under the supervision of Dr Melanie Giles. Having recently completed a Masters degree focusing on Medieval and Iron Age Celtic art at the University of Oxford, he is currently applying a strong interest in material culture and the anthropology of art to his PhD thesis on Iron Age shields from England and Wales.

Email: matthew.hitchcock@manchester.ac.uk
Twitter: @ArchaeologyMatt

Bibliography

Making an Impression: using fingerprint analysis to investigate demographics of pottery production

Meredith Laing

Archaeologists have recently begun to realise the potential of studying ancient fingerprints to shed light on who was involved in craft production. Fingerprints can be preserved on malleable surfaces such as clay, wax, resin, or in painted surfaces. I have been studying those left on briquetage (the ceramic debris from salt production), to investigate who was involved in making salt during the Middle to Late Iron Age within Eastern England.

Fingerprints

The visible lines on the skin of the fingertips are known as epidermal ridges. Aside from their well-known use in forensic identification work, they can provide basic information about the age and sex of the person who left them. Fingerprint patterns develop before birth and, once formed, do not change. Rather, the epidermal ridges increase in breadth (rather than number) as the hands and fingers grow. Ridge breadth increases with age until 15–16 years, when ridges reach their adult dimensions. From this point ageing a print becomes difficult (beyond saying a print was made by an adult) but sexual dimorphism is more apparent. Within a given geographical population, adult men generally have wider ridges than adult women. Epidermal ridge dimensions vary slightly depending on the location of the population. Therefore, to get reliable demographic data from a print, you need to know from which geographical population it comes. This means that to interpret a print found on an archaeological artefact, a geographically relevant reference data set is necessary for comparison and interpretation.

As there was no comprehensive, published data set for Britain, or neighbouring countries, which included data from children and adults, I created one (comprising fingerprints from 260 individuals aged 5 to 68) as part of my doctoral research. The reference data showed a strong correlation between age and ridge breadth until 15–16 years. Thereafter there is little correlation with age, but a broad pattern of sexual dimorphism amongst adult prints. It also showed a strong correlation between ridge breadth and height. We know that people in the Iron Age were slightly shorter than modern populations, so I re-scaled the modern reference data to create a set of working interpretive parameters for ridge breadths and age until the mid-teens, and between ridge breadths and sex for adults, for Iron Age fingerprints.

Before you can assign an age or sex to the maker of an archaeological print found on pottery, clay shrinkage also needs to be taken into account. During drying and firing clay loses moisture and shrinks. Several studies have shown the average shrinkage to be about 7.5% which is the figure I have used in my study. So, measured fingerprints need to be re-scaled back up to their living dimensions (pre-firing) before they can be interpreted.
Briquetage

Salt was a valuable commodity in later prehistoric times, for preservation of foodstuffs and processing of animal hides. It was produced at coastal locations in southern and eastern England, and at inland saline springs. I have been studying briquetage from salt-working sites on the Lincolnshire and Essex coasts. At saltern sites, clay-lined settling tanks dug into the ground surface are relatively common. Saltwater was stored in them whilst some impurities settled out. The brine was transferred to shallow evaporation troughs supported on either pedestals or fire-bars, positioned within a hearth structure cut into the ground surface. Salt crystals were probably removed as they formed to avoid contamination. Salt may also have been obtained by burning halophytic marsh plants, whose ash was mixed with sea water and filtered to create brine which was boiled to extract the salt.

Looking through many, many boxes of briquetage has demonstrated that supports for the evaporation troughs, principally pedestals, and bits of clay used to stabilise wobbly troughs (known as clips or packing pieces) are the most likely to preserve fingerprints and impressions. The troughs are often well made, with smooth surfaces, and do not usually preserve prints. This contrasts to other briquetage, which was squeezed into shape from wet clay on site as required. A few examples of pedestals are shown in Figure 1.

The fingerprints preserved on briquetage are often partial, being the accidental result of moulding the pedestals and other salt extraction equipment, which was entirely functional, with little surface finishing. Two examples are shown in figure 2. Measuring the dimensions of epidermal ridges, rescaling to allow for clay shrinkage, and comparing to the parameters established from the reference collection has produced an unexpected result.

For both Lincolnshire and Essex sites (72 fingerprints from 16 different saltern sites) throughout the Middle and Late Iron Age, around 90% of prints are those of males over the age of 15–16 years, or adult males.
A few prints could have been made by adult women or younger teenage males, but no prints were found to indicate any of the briquetage was made by younger individuals. These results strongly suggest an age and gender aspect to making briquetage. Analysis of the clay matrix of the pedestals and supports for the troughs indicates they were produced in situ at the salterns. From this we may infer that manufacture of the briquetage, and perhaps operation of the salt making process, was carried out by late teenage and adult men, to the exclusion of other members of the community.

Figure 2: examples of fingerprints on briquetage pedestals from Addlethorpe Northern Bypass (left) and Welland Bank Quarry (right). Photography by Meredith Laing.

Meredith Laing won the LPFG sponsored prize for best paper, based on this research, at the Iron Age Research Student Symposium 2018. Her research is funded by the Midlands 4 Cities AHRC consortium and the University of Leicester.

Archaeological Textiles: Considering Textile Production during Iron Age Britain

Jennifer Beamer

Introduction

Archaeological textile studies in prehistoric Britain has been maintained primarily through postgraduate studies (Hedges 1973; DeRoche 1995; Tuohy 1995), though more scholars are making important contributions in general prehistory publications (e.g. Hurcombe 2008; 2014). Despite the ubiquity of textile tool finds in the archaeological record, the conditions are usually insufficient for textile preservation. Loomweights and spindle whorls are commonly used indicators for textile production and represent repositories of untapped information. Using both
quantitative and qualitative methods will be key in gleaning this information.

Studies of textile production in Iron Age Britain have typically oversimplified the process of making cloth, and traditionally focused on whether it was a domestic or specialized craft (Cunliffe 2005). Faunal evidence (Serjeanston 2007) has been used in conjunction with a prevalence of textile tools to further emphasize these two simple modes of production, possibly undermining how archaeologists understand textile production as a functional and social medium. My research aims to push beyond these simple economic questions to assess textile production within an embedded environment. This research draws upon the archaeological record, quantitative methods, ethnographies, and experimental archaeology as methods to address questions in an attempt to understand textile production beyond their economic impact.

Methods for the archaeological study of loomweights

The following paragraphs will demonstrate how this assortment of methods can be applied via a case study example involving loomweights from Danebury. Experimental archaeology and ethnography are two methods which can help elaborate upon the process of textile production beyond the mechanical function of loomweights. These methods examine the role of technique in the *chaîne opératoire*, the sequence of steps involved in making a product, to consider the ways people engaged with both the materials and processes involved. The experimental work conducted by Hurcombe (2008; 2014) has been instrumental in understanding textile techniques available in the Iron Age. Hoffman’s (1974) ethnographies have been influential in revealing techniques Norwegian weavers used on the warp-weighted loom. The concept of the *chaîne opératoire* affords the ability to investigate the relationships between the process of making and the material and social components involved in the end-product (Dobres 2010: 164–165).

![Chalk loomweight from Danebury illustrating double wear grooves above the perforation. Photography by Jennifer Beamer.](image-url)
Typologies are another method employed to determine more precisely which objects are loomweights and those which are not. Some researchers (e.g. Shaffrey 2017) have questioned whether heavy perforated objects are loomweights. Three basic ways exist to determine this likelihood. The first is by association with spindle whorls. They are considered part of the same chaîne opératoire because multiple spinners are required to supply weavers with sufficient quantities of yarn (Ryder 1993: 313). Second, grooves which rise vertically from the perforation on one or both sides is fairly common in chalk (Figure 1). Consensus shows that grooving is the result of suspensory use. Thirdly, two parameters, mass and thickness, can be used in conjunction with a mathematical equation to determine whether a loomweight is a loomweight.

The application of mathematical equations can be helpful in illuminating the range of materials that could have comprised warp threads in a way that examining wear grooves might not. Thus, this quantitative method can help determine the probabilities of which fibers, wool or flax, for example, that could have supported heavy loomweights. Measuring the tensile strength of yarns comprised of different materials is surprisingly complicated. This aspect can be considered in relation to the mass and thickness of loomweights to determine which materials were likely being used as warp yarns (see Appendix). Examining Iron Age cultures which also utilized the warp-weighted loom offer pathways for comparative studies. Excavations in Hungary produced heavy loomweights, which are similar to the assemblage at Danebury, and are associated with contemporary linen textiles (Ďurkovič 2015). Croatian researchers have conducted experimental archaeology to demonstrate their function with the warp-weighted loom, with optimistic results (Ivančan & Karavidović 2016).

A final method available is through an analysis of the ways people interacted with, and responded to, their landscape. Van der Veen (2014) has discussed human/plant relationships as a crucial line of evidence which has the power to reveal societal structure. A dedicated analysis of flax-as-fiber must be conducted and merits ideas beyond its caloric impact on Iron Age society. This is to balance the emphasis placed on wool fibers since a variety of fibers would have been available to the Iron Age producer (see Hurcombe 2014).

The list of methods presented offer insights into the way researchers can view and analyze loomweights within their physical and social context, though no single method will deliver a complete picture. This case study exemplifies the importance of an integrated approach to archaeological textile studies in Iron Age Britain, and offers the chance to explore the complexity and nuance that may have been present in the textile production sequence.

Jennifer Beamer, Year 2, PhD student at the University of Leicester. Supervisors: Mary Harlow, Jeremy Taylor
Working thesis title: Using Acts of Deposition to Characterize Textile Production During the British Iron Age

Summary of research:

Without textual accounts or iconography in lieu of textile remains, archaeologists are left with very little in which to characterize textile production. Textile tools are commonly found on most Iron Age sites in Britain. Though they have typically been regarded as a way of confirming textile production activities, the studies conducted at Center for Textile Research have shown that they can reveal much more. It is the CTR database that I use to record and analyze the data collected from my case study sites like Danebury. My research is two-fold, since I am also concerned with the social nature of textile production. One way in which I hope to discover more is through analyzing depositional contexts involving textile tools. Structured deposition and assemblage theory are useful methodologies which could be useful in revealing one type of social context not previously touched upon by past scholars. It is hoped that the information generated from the textile tools individually and the context of their deposition will allow me to create a nuanced picture of textile production which is sensitive to aspects that extend beyond typically economic considerations in British Iron Age studies.
Appendix

Danebury Pit 63 Layer 2 SF122

1925g weight, 10g of tension per thread, 8.6cm thick, 192.5 warp threads per weight:
\[(192.5\times2)/8.6 = 44.8\text{ threads/cm}, \text{ making the yarn } 0.19\text{mm each in diameter}\]

1925g weight, 30g of tension per thread, 8.6cm thick, 64 warp threads per weight:
\[(64\times2)/8.6 = 14.9\text{ threads/cm}, \text{ making the yarn } 0.58\text{mm each in diameter}\]

Bibliography

‘The Matter in Hand’: LPFG annual conference, British Museum

Allison Casaly

This year’s LPFG annual conference explored the ways in which humans engaged with objects in the past, and how consideration of the cognitive and physical processes of constructing objects can inform us of prehistoric perspectives. Multiple theoretical and methodological approaches coalesced to emphasise the importance of understanding the processes, raw materials and technology deployed in object construction.

The day commenced with three presentations on the importance of a holistic consideration of interacting with objects. Sophia Adams discussed the necessity of expanding the purview of object studies beyond the visual dimension to consider elements like weight and texture. Marta Innes’ study of food vessel production critiqued the “pseudo-distinctions” that govern established typological categorization of food vessels. Innes argued that the interaction between the maker and the clay—rather than a predetermined design—would have been the most salient determinant of a vessel’s final form. Meredith Laing concluded the session by investigating the social context of prehistoric salt production. Her analysis of fingerprints from briquetage fragments concluded that salt production was conducted almost exclusively by adult males, supporting the possibility of a gendered labour structure.

The second session began with Brendan O’Connor and Neil Wilkin’s analysis of new additions to the corpus of ‘ornament horizon’ hoards in southern England. Emphasis was placed on “Liss-type” bracelets, whose distribution was plotted against that of Sussex Loops to suggest possible areas of practice. In keeping with the conference-wide advocacy of considering artefact biographies, the speakers suggest that the depositional context and physical arrangement of Middle Bronze Age (MBA) hoards can elucidate the ways they were understood by prehistoric people, potentially indicating association with the body.

The next speakers cautioned against purely ‘utilitarian’ interpretations of artefacts. Matthew Hitchcock argued that understanding Iron Age shields as artistic objects allows us to envision their effect on viewers and wielders, and to appreciate their “enchanting” effect on both. Helen Chittock advocated a new perspective on modifying Iron Age metalwork, compelling us to understand repair as an integral element of its biography. The physical manifestation of repair might have materialized the breakage event, or perhaps the passage of time itself.

Matthew Knight concluded the session, discussing new research into gold in Britain’s auriferous regions. This overview emphasized the value of object-specific analyses, coupled with an understanding of technical production processes, in developing new insight into prehistoric craft production. Knight finished with a call to expand object-based research using replicas of gold objects.
The third session advocated close examination of the production process for evaluating archaeological objects and the raw materials involved. Tess Machling and Roland Williamson considered sheet-work in the manufacture of Iron Age gold torcs to create the appearance of substantial, weighty objects using small quantities of gold. They appealed to “demystify” gold objects to open them up to more in-depth inquiry. Mark Griffiths discussed his work reproducing prehistoric wooden objects, in which the stages from raw material procurement to social engagement with the object were explored. Griffiths’ research demonstrated the importance of active engagement with prehistoric crafting processes to understand not just technical methods, but the social context of those processes also. Finally, Jennifer Beamer presented an analysis of Iron Age loomweights to challenge the supposed dominance of wool textiles in the Iron Age. The material evidence suggests that flax could also have been utilized, and because textiles were likely central elements in the construction of appearance, human-plant relationships should be allocated more attention.

To conclude the third session, Dawn McLaren detailed new finds from Black Loch of Myrton, Wigtownshire. The recent season of excavations yielded a collection of artefacts remarkable for both their intrinsic qualities and their contexts within the site, including a decorated wooden bowl deposited in a midden.
The theme of technical methods resurfaced here, as the wooden bowl represents the first known instance of lathe-turning in first millennium BC Scotland. Interestingly, the incised designs on the wooden bowl are similar to Bronze Age geometric motifs; suggesting that such motifs crossed the Bronze Age-Iron Age transition. These finds necessitate a re-analysis of technology in Early Iron Age Scotland and remind us of the extensive body of data likely missing from sites with poor organic preservation. In her keynote address exploring prehistoric grave goods, Melanie Giles sought to understand the role of objects in negotiating death as an individual and communal experience. She questioned the assumption that grave goods represented the identity of the deceased, arguing that such objects could instead constitute gifts from the living or objects for use in the afterlife. The role of performance in selecting grave goods was discussed, with activities such as deliberate fracturing of objects representing mortuary rituals. An important element in Giles’ analysis was the consideration of anecdotal ethnographic evidence to illustrate the varied complexity of human engagement with mortuary ritual. Overall, Giles argued that the relationship between grave goods, bodies and communities was instead diverse and complex.

The conference served as an exciting insight into the new research being conducted on Bronze and Iron Age artefacts; emphasizing the value of considering object biographies to better understand human-object relationships. A recurring theme throughout was the importance of the technical processes used to construct objects, and the raw materials of which they were composed. Several papers discussed back-dating the earliest known use of sophisticated techniques, from O’Connor and Wilkin’s discussion of Middle Bronze Age cire perdu cast Liss-type bracelets, to Knight’s discussion of Late Bronze Age soldering on the Wrexham bracelet, and McLaren’s discussion of Early Iron Age lathe-turning in the Black Loch wooden bowl. Similarly, Machling and Williamson argued that the complex sheet-working techniques employed in Iron Age goldwork were so advanced that an ‘ancestry’ stretching into the Bronze Age would have been necessary for its development. This thread of inquiry is leading to an expanded understanding of the temporal breadth of technically sophisticated processes and their development trajectory, as well as the social and technical context of objects. The research shared at this year’s conference revealed new pathways to a more holistic understanding of human-object engagement in later prehistory.

Allison Casaly is a PhD candidate in Anthropological Archaeology at New York University. Her thesis research concerns personal ornamentation of the British Isles and northern France during the Middle and Late Bronze Age, with specific emphasis on ornament hoard composition and spatial distribution.

Email: amc1002@nyu.edu

The LPFG committee would like to thank all the speakers and delegates of The Matter in Hand for making it such an interesting day. Please see page 19 for details of our 2019 conference.
Setting Artefacts Free: an independent chronology for British Iron Age brooches

Sophia Adams

We are one year in to our research project ‘Setting Artefacts Free’, which addresses the dating of Iron Age brooches through a programme of radiocarbon sampling and Bayesian modelling. The research is funded by The Leverhulme Trust at SUERC, University of Glasgow. Principal Investigator, Dr Derek Hamilton, and Research Associate, Dr Sophia Adams have been collecting samples of human and animal remains, and charred seeds, from contexts in which Iron Age brooches have been found in Britain. These are mostly inhumations, some cremations, and a few pit deposits; all from England. We are also expanding the research area to include northern regions of France.

How can you help? We are seeking further material to sample, especially any that will fill in some of the gaps in the geographical distribution of our samples (see Figure 2). If you know of a find of one or more Iron Age brooches (Early, Middle or Late Iron Age including conquest period finds), from an excavated context, that is associated with material which could potentially be radiocarbon dated, please do contact us. These can be finds from developer-led, research and community projects. We will extract and date the samples for free and share the results with your project as soon as they are available. The results will then be incorporated into our models for Bayesian analysis, which use the brooch typology and technology to sequence the dates. This will enable us to interrogate the chronology of the brooches and by extension reconsider the dating of other Iron Age sites and finds that have previously relied on the stylistic dating of brooches.

Figure 1: Examples of Iron Age brooches from Pocklington, courtesy of MAP Archaeology. Photograph: Sophia Adams.
For further information on the project visit:
https://www.gla.ac.uk/research/az/suerc/projects/settingartefactsfree/
If you can help, or wish to discuss our project in more detail, do contact me at
sophia.adams@glasgow.ac.uk

Sophia Adams (Sophie Brooches!)

Announcements

Save the Date

We're very excited to announce that next year’s annual conference will be held at the National Museum of Scotland in Edinburgh!

The date for this will be **26th October 2019**. More details and a call for papers will follow shortly.

Annual General Meeting 2019

11:00am–15:00pm
8th February 2019
British Museum

We’d like to invite all our members to attend our AGM in February. If you are interested in attending, please let us know by emailing laterprehistoricfindsgroup@gmail.com. For security reasons, it is essential you let us know you are attending by 4th February.
Join our committee!

The LPFG is currently seeking two enthusiastic, dedicated individuals to fill two committee positions: Treasurer and Social Media Officer.

Treasurer
The Treasurer is responsible for being the nominated bank account representative, providing financial advice to the group, writing yearly financial reports, maintaining financial records, and reimbursing costs. Prior experience maintaining financial records, knowledge about tax law, and setting budgets is desirable, but not essential as long as the candidate is willing to learn.

Social Media Officer
The Social Media Officer is responsible for monitoring and generating online content for our social media pages on Facebook and Twitter. You’ll be responsible for sharing new and exciting research, finds and sites to our membership, as well as directly engaging with a range of audiences who enquire about our group through our online platforms. You’ll also have the opportunity to be creative with this role and develop new ways to engage with membership and expand into other social media avenues that we don’t currently utilise.

If you are interested in either position, please send a short (300 words) statement of interest to laterprehistoricfindsgroup@gmail.com. Applications are open until the 6th February and a decision will be made at our AGM on 8th February 2019.

Keep up with us online at:
https://laterprehistoricfinds.com

E-mail us at:
laterprehistoricfindsgroup@gmail.com

Find us on Facebook

Or on Twitter: @LtrPrehistFinds

All text in this newsletter is © the individual contributors / Later Prehistoric Finds Group. Please contact us for permission if you would like to reproduce any part of this publication.